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ABSTRACT

A previous treatment of overtone modes in trapped energy resonators is
extended to the case of plates with slowly varying thickness. The resulting
single scalar equation is applied in the analysis of plano-convex contoured
quartz crystal resonators and a lumped parameter representation of the admit-
tance, which is valid in the vicinity of a resonance, is obtained. The
analysis holds for the fundamental and anharmonic overtones of the fundamental
and each harmonic overtone thickness mode. The influence of piezoelectric
stiffening, electrode mass loading and electrical shorting is included in
the analysis. No adjustable parameters are required in the theory. Although
the basic piezoelectric differential equation employed here is quite different
from the ones that have been employed in similar applications heretofore, the
analysis accounting for the contouring has appeared in the literature. It
is shown that calculations based on the analysis agree extremely well with

experimental results obtained with contoured AT-cut quartz crystal resonators.
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1. Introduction
In a recent investigation1 the three-dimensional equations of linear
piezoelectricity, with the aid of certain simplifying assumptions, were applied

in the analysis of rotated Y-cut quartz trapped energy resonators with rect-
angular electrodes operating in overtones of coupled thickness-shear and
thickness-twist vibrations, In this paper the previous analysis is extended
to the case of plates with slowly varying thickness. The asymptotic dispersion
relation for small wavenumbers along the electroded flat plate obtained in the
recent analysis1 of trapped energy resonators enables us to construct the
single scalar differential equation of coupled thickness-shear and thickness-
twist, which holds for plates with slowly varying thickness. The simplifying
assumptions of small piezoelectric coupling, one-dimensional (thickness)
dependence of all electrical variables and the neglect of certain small unim-
portant elastic constants employed in the earlier1 analysis naturally are
employed here also, The influence of piezoelectric stiffening, electrode mass
loading and electrical shorting is included nonetheless. Since the influence
of the contouring on the trapping is much greater than the influence of the
discontinuity between the electroded and unelectroded region, the edge of the
electrode is ignored in the determination of the eigensolution, Since the
mode is assumed to be highly trapped in the vicinity of the center of the con-
toured plate, the boundary conditions at the edge of the plate are ignored in
the analysis. The procedure for obtaining the eigensolution follows that of
Wilsonz, who treated the purely elastic case using an incorrect equation which

3,4
had been used earlier by others ’ .,




The resulting inhomogeneous single scalar equation is applied in the
analysis of the forced vibrations of a plano-convex contoured AT-cut quartz
crystal resonator and a lumped parameter representation of the admittance is

obtained. Calculations based on the analysis are in excellent agreement with

the results of experiments on contoured AT-cut quartz crystal resonators,

2, Basic Equations

A schematic diagram of a plano-convex quartz crystal resonator is shown |

in Fig.l., Since the thickness h is a slowly varying function of % and Xq, it

is appropriate to first consider the solution for the electroded flat plate

shown in Fig.2 and then generalize it to be applicable to the contoured plate £
with slowly varying thickness. Accordingly, we first briefly reproduce the
analysis1 of the electroded flat plate, On the basis of the simplifying
assumptions of small piezoelectric coupling, the neglect of certain relatively
small unimportant elastic constants and the fact that in the essentially
thickness-shear modes of interest, the wavenumbers in both the X,= and x,- ;
directions are much smaller than the thickness wavenumber, it has been s'hown1

that to second order in small quantities the differential equations that remain

to be satisfied take the form

€1a%1,11* 12 * %672, 12 * %661, 22 * O55"1, 33 * %269, 22 PYy 4
s "1’ 10 " %%z, 11 " %0s%a, 22" Ple
0, (2.1)

®26%1,22 ~ ®22%,22 °

and we note that the notation is defined in Ref,l, We further note that for

the circumstances outlined it has been shown1 that u, is two orders of magnitude

smaller than u, and, hence, negligible to the order of approximation being

obtained. To the same order of approximation the pertinent constitutive

equations take the foru}
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and the boundary conditions that remain to be satisfied on the electroded major

surfaces of the flat plate take the form

=F20'nt,, o=t (w2 atx,=*h,  (2.3)

T, =F200H, T 2

21 2

where p' is the mass density of the electrode plating.
It has been shownl’5 that in order to remove the inhomogeneous driving
term from the boundary condition (2.3)3 and place it in the differential

equation (2.1)1, we take

P iwt n
u1=ul+Kx2e ) u2=u2,
Vx e :
@ = —2‘72- AVt . eﬁ u, + szelwt, (2.4)
22
where
K=-—e26v/c662h, C=-(e26/€22)u1(h)/h. (2.5)

Then the substitution of (2.4) into (2.1) and (2.3), with (2,2) and (2.5),yields

°11“’1, 11+ (12 %% ’ﬁz, 12 +E6661, 22* cssﬁl, 33" pﬁl 5 p‘”zxxzeiwt )
Ce62,11* ©C12+%6 % 12 C32, 22 =P 5 il
cesﬁz, 3" 66661, 5% (e§6/822h)ﬁl =F 2p ’h’ﬁl at x,=%h,
c2262’2+c12{‘11,1=¢ 2p'h'§2 at x,=%h, (2.7)
where
%56 = %66 * %26/%227 b8y




and (2.1)3 and (2.3), are satisfied by the forms chosen. Equations (2,6) and
(2.7) constitute a system of linear inhomogeneous differential equations with
homogeneous boundary conditions on the major surfaces of the electroded flat
plate, It has been shownl’ 2 that an asymptotic eigensolution for plate waves
valid to second order in the small wavenumbers § and v along the electroded

flat plate can be written in the form

~

ar ey (2) _, it
w, = (B, sin 'l']lx2 +B,"" sin n‘ﬂlxz) cos §xl cos vx,e %
PR (2) : iwt
u,= (B, cos nlxz +B, " cos nﬂlxz) sin §xl cos vx,e T, (2.9)
where
(1) (2)
Al e R S R
’ ’ e e = ’ﬁ ’
Lk 22’ 2 pqa i i |
2 (1)
©0%%6 2y GU  tey, vEcy 10E,
b E -C ’ B2 = C H,n sin M'T‘ 'h b (2.10)
66 22 22 'Y 1
provided the dispersion relation
2.2
2 2 nmT A ~2
Mng +togey 4h2 Ceg = PV = o, (2.11)

which is valid to second order in & and v, is satisfied, and where we have
employed the definitions

(r566 - c66) (c22r + °12)°°t unTy/ 2

T e i L c, A" ’
2 2
8k e ol
~ e 26 A 2 26 a 2p'h
c =0C (l - eenm— o 2R) s k B r— 3 R = ~——— . (2.12)
66 66 n2112 26 c66€22 ph

The derivation of the dispersion relation (2.11) in Refs.,l and 5 reveals
that (2.11) is obtained from the homogeneous form of (2.6)l when (2.6)2 and
(2.7) are satisfied to second order in § and v. In particular, when (2.6)2
and (2,7) are satisfied to second order in E and v and the resulting relations
are substituted in the homogeneous form of (2.6) s ‘there results

2.2

2 nIiTw - ~2)a e
(Mn§2+c55v + 4h2 Cgg ~ P u, =0, (2.13)

e TS




from which the dispersion relation (2.11) is obtained for nonzero Gl’ which
is the large mechanical displacement field. On account of the foregoing,
from (2.6)1, (2.5)1 and (2.13) it is clear that the inhomogeneous differential

equation governinyg coupled thickness-shear and thickness-twist vibrations is

of the form
BZG BZG 2 2 e VUx
M 1 + C _—1 - u—- a {\1 - pi\; = pwz M eiwt (2 14)
n 2 55 2 2 661 1 c,.,.2h 4 a
bxl Bx3 4h 66

where @ is the driving frequency. Clearly, the homogeneous (V=0) solutions
for the flat plate are consistent with (2.11). It has been shownl’5 that when
the approximation holds and, hence, by virtue of the foregoing, Eq. (2,14) may
be employed, the approximate edge conditions to be satisfied at a junction
between an electroded and unelectroded region of the plate are the continuity
of

u, and aul/an, (2.15)

where n represents the normal to the junction.

We now generalize Eq. (2.14) for the flat plate to be applicable to a
contoured plate with slowly varying thickness simply by permitting h in (2.14)
to be a slowly varying function of xl and x3. To this end consider the geometry
shown in Fig.3., Since, as shown in Fig.3, the triangle inscribed in the semi-

circle and containing a diameter is a right triangle, all three right triangles

are similar and we have

2R~ (2h_- 2h)
T “%h -2n°
(o]

(2.16)

where

2 . BN
pe gy ¢+ %5)°, (2.17)

and R is the radius of curvature of the spherical surface of the contoured

resonator, Since 2ho << R, from (2,16) with (2.17), we obtain




2 2
2 2 -
h=2h [1- (x; +x])/4Rh ], (2.18)
2
the substitution of which in (2.14) and expansion to first order in xi-+x3
yields sis
azﬁl Bzﬁl nm 666 (xi~+x§)
" R el [1+ 2%h_ _“’1’
1 3 o} .
o e Vx
R E2 S0 g
pu, = pw —56-;2—h- e y (2.19)

which is the inhomogeneous differential equation for coupled thickness-shear

and thickness-twist vibrations of a plano-convex resonator,

3. Contoured Resonator

The problem of a contoured resonator driven into coupled thickness-shear
and thickness-twist vibrations by the application of a driving voltage across
the electrodes in the steady state may now be treated by finding the steady-
state solution of (2.19) which remains bounded and vanishes at infinity.

The solution is assumed to be continuous across the edge of the electrode be-
cause the influence of the contouring on the mode shape (trapping) is much
greater than the influence of the discontinuity between the electroded and
unelectroded region. The difierential equation of coupled thickness-shear
and thickness-twist vibrations for the electroded portion of the contoured
resonator, Eq. (2.19), is employed because the modes are sharply confined in
the vicinity of the center of the contoured resonator and the relatively large
electrodes are located in the central part of the contoured plate, Similarly,
the boundary conditions at the edge of the contoured plate are ignored in

the analysis because the modes are highly trapped in the vicinity of the
center of the contoured plate and have negligible amplitude at the edge of

the plate.
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We first seek the eigensolutions of the associated homogeneous problem,

i.e., with V=0, To this end we take the ﬁl-displacement field in the form

~

-~ . iu’t
ul(xl,xz,x3,t) -u(xl,xa) sm(nrrx2/2h)e ” (3.1)
the substitution of which in (2.19) yields
2 24 2 2
2
3u 3%+ 2T g B g * ) ~2
M=+ o mep e = | L & ~—p—== u % pliam 0 (3.2)
n 55 2 2 e 2Rh ’
Bxl Bx3 4h, o

where ® denotes the eigenfrequency. As a solution of (3.2) we take
u = X(xl)Z(x3) 9 (3.3)

which satisfies (3.2) provided

2 L
X'+ (y° - anxi)x= 0, z"+ @~ Bixg)z=0, (3.4)

where the undetermined separation constants y and [ satisfy

2 hzTT2 A 2 2
pw" = ——3= Cge =M Y +c o, (3.5)
4h
and
2 2_2a 3 2 2 24 3
@ =nm c66/8RhoMn , B =nm C66/8Rhoc55 . (3.6)

The only solutions of (3.4) that are bounded for all Xy and Xy and vanish at «

are the Hermite functions6

2 2
xl an3
2z i
X =€ ng/anxl) e HPWan3) y (3.7)
where Hm and Hp are Hermite polynomials and
2 _gq (1+2m), p2 =B (1+2p) (3.8)
Ymn = %n , u'pn n i y

which are determined from the condition that the series for Hm and Hp terminate
and they be polynomials. Since we are interested in only those solutions which

are symmetric in x. and x_,, we have

p i 3’




By O B8 ceei s (3.9)

For a given value of n, m and p, (3.8), with (3.6), determines the values of

the separation constants Yorr and up which, from (3.5), yield the eigenfre-

n’

quencies ® in the form
nmp

e 2h M c_
a2 =——2—6-6- [1 "nl—n —RE('/:“— (2m+1) +A/;§§ (2p+1)>]. (3.10)

We now write the steady-state solution of (2.19) as a sum of eigensolu-

tions, thus

A _ it }Z zz ji nmp~
ul e H ulnmp 3 (3.11)
n mp
where oo
4 X lwnmpt =t nmx
e T e B s unmp 3 (3.12)
and 2 2
- x—l -B x_3
is n 2 n 2
unmp =e Hm (,./cxnxl) e Hp (A/an3) 5 (3.13)

and we note that along with Gl, from (2.4); and (2.5),, we have

n-1
VX, toe . %2 nmp T 2 %2\ iwt
ubwl Rt e e D g
22

e (3.14)

Since the eigensolutions are sharply confined in the vicinity of the center of
the contoured plate and have negligible amplitudes at relatively small values
of X and X4, 2h in (2,18) may be replaced by 2h° in any integration over the
eigensolutions performed in the course of this forced vibration analysis with-
out appreciable error., When h is replaced by ho’ the solution functions in

(3.12)2 with (3,13) satisfy an orthogonality condition, which may be written

o
in the form
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@® [+ ho
i :[ Uinmpliwr F1%%3%%2 = T n) @) (p) Onvomulpr 2 (a5
e 5 3 [o}
where
i m., P,
Lmp = M2 ™2 P JB . (3.16)

Substituting from (3.11) and (3.12) into (2,19) and employing (3.2) for each

nmp-eigensolution, we obtain

2
nmx we, Vx
nmp 2 ~2 ' 2 i 26 72
z E‘ E H (® u.nmp)s1n ——— ——c662h 2 (3.17)
n m p

where it is understood that V=0 in the unelectroded region. From (3.17) we

form
- h nmmx VTTX
E ? z P (o2 _ 52 ).[.[“ u_ dx, dx J‘sin-—si e
L nmp nmp w1 9%3 o o TR W ®

nmop - -® -

w e26V 1 h \,'nxz

o I ™ u\‘wr dxldx3 I x2 sin h dx2 5 (3.18)

66 A -h
e

where Ae is the area of the electrode,and replacing h by ‘no on both sides of

(3.18), with the aid of the orthogonality condition in (3,15), we find

n-1
2
roup (-1) .6 4ho'amnpv
H = 35 3 5 (3.19)
c . .nmL  [1- @ /0°))
66 nmp nmp
where
4 (3.20)

nmp % 41'-'lmnF3np 4

and if, as is reasonable in the case of the contoured resonator because the
mode shape is sharply confined to the center, we replace the circular electrode

by the circumscribed square with lengths 2L1 = 223, we have




10.

x2
21 1
F, = re-a"?nc,/a ) a
1nm d m¥V%*) 9
o
2
by %
o n 2
F3np = f e HpQ/Snx3) dx3 . (3.21)
o

Thus, Egs. (2.4), (2.5), (3.11) - (3.14), (3.16) and (3.19) - (3.21) constitute
the series representation of the steady-state solution for the linear forced
vibrations of this contoured resonator. In the vicinity of a resonance, say
the NMPth, one term in the sums in (3.11) and (3.14) dominates and the others
r are negligible. Thus in the vicinity of said resonance the steady-state

solution may be written

e N e %262 st
b " 2R Y c . 2h ’
66
N-1
Ve, . e Nmx = X, .
iwt 26 _NMP ( ‘ 2 2 2) iot ,
et + %y H u sin — (-1) /e (3.22)
where, as usual, ENMP in (3.22) is to be replaced by
~ = ~ + .~
® Ouvp + 1P’ 2p 2 (3.23)

in which QNMP is the unloaded quality factor of the contoured resonator in
the NMPth mode, The admittance YNMP of this rotated Y-cut contoured resonator
operating in the NMPth mode is obtained by substituting from (3.22) into

(2.2)5, which is then substituted into

1--_[ b, ax dx,, (3.24)
A
e
with the result
a2
i
N ety Aab k. iwezz*zs"’rzmp (3. 28)
NMP \'/ 2h 26 ¥

[(5fm,/w2) S

ee—
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where

2 2
K6 =°26/%622

o 2

A

e'Ae(l-l-ll/eRho) . (3.26)
and in obtaining the second term in (3,25) we have again replaced the circular
electrode by the circumscribed square with lengths 221 = ZL3 to perform the

integrations. The quantities Co and C MP defined by

™
~ a2 a2
B Ag8aa (1 +ky6) - i “22)‘26'0;!4? ReFon
o 7h » Coavp 5 el .
- NT Lowp

are called the static and motional capacitances, respectively. The integrals
appearing in (3,21), which appear prominently in (3.27) 2 have been evaluated
for a few values of M and P and take the form

1 fr /5N 1 [n /EN

F E — — QY SA) — L F = — -~ erf —_ 4

1NO — N2 2 17 3NO |~ 2 2 37
aN BN

— 2
~-a L. /2
FIN2 -——2-41/:-12-1- erf \/121! 21-4!,1 « T 3
“aN
2
2 i BN -BNJL3/2
P = == JF EINT 4,41, e p
By
2
«, ~a. b /2
12 i N N1l
F1N4 ;— = erf 3 21-16 aN!,Ie y
N
12 Mm FI-Q- 3 'Buzzzs/z
F = — /= erf - ,63-16 BN £3e . (3.28)

4, Results

Equation (3.10) has been employed in the calculation of some resonant
frequencies of two plano-convex resonators, which are compared with frequency
measurements on the respective resonators. The first resonator has a blank
diameter of .550 in,, an electrode diameter of .370 in,, a radius of curvature R ﬂ

of 5 diopters, which is 106 mm, an electrode mass loading ratio Rof 1.864x10'-3 h
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and a measured thickness 2h° = ,0271 in, = ,6883 mm., Since we did not have
confidence in the accuracy of the measured thickness to the required number of
significant figures, we adjusted the thickness in order that the calculated
value of £(3,0,0) agree with the measured value. The adjusted thickness 2h°
is .68785 mm, The comparison between the calculated and measured values is
given in Table I, which shows that the agreement between theory and experiment
is excellent with the exception of f(1,2,2)., We believe that strong coupling
to flexure, which has been omitted from the theory, exists in the case of the
mode for which the calculation does not agree well with the measurements. The
measured frequencies in Table I are the average values determined from five
units. For this resonator the motional capacitances of a few of the modes have
been calculated from Eq.(3.27)2 and compared with the average value determined
from the measurement of five units for each mode. The comparison between the
calculated and measured values is given in Table II, which shows that the
agreement between theory and experiment is reasonably good.

The second resonator has a blank diameter of .590 in., an electrode
diameter of .374 in., a radius of curvature R of 2.0 in., which is ,0508 m,
a measured thickness of gold electrode 2h’= 750 A and a maximum plate thick-
ness 2h° = ,06502 in, = 1.6515)(10-3 m. In this case we used the measured
maximum plate thickness, since the measurement is considered to be accurate to
one more significant figure than in the case of the first resonator, and conse-
quently, no adjustable parameters were employed. The comparison between the
calculated and measured values is given in Table III, in which excellent

agreement between theory and experiment is indicated again.




13,

Acknowledgements

We wish to thank Drs., T.R. Meeker and A,A. Comparini of Bell Laboratories
for providing the measured data associated with Table IIT,

The work of one of the authors (HFT) was supported in part by the Army
Research Office under Grant No. DAAG29-76-G-0176 and the Office of Naval

Research under Contract No. N00014-76-C-0368,




14,

REFERENCES

H.F. Tiersten, "Analysis of Trapped Energy Resonators Operating in
Overtones of Coupled Thickness-Shear and Thickness-Twist," J. Acoust.
Soc. Am., 59, 879 (1976).

C.J. Wilson, "Vibration Modes of AT-Cut Convex Quartz Resonators,"
J. Phys. D: Appl. Phys., 7, 2449 (1974).

H.J. McSkimin, in Quartz Crystals for Electrical Circuits, edited by
R.A, Heising (D, Van Nostrand, New York, 1946), Chap.VII.

W.G. Stoddard, "Design Equations for Plano-Convex AT Filter Crystals,"
Proceedings of the 17th Annual Symposium on Frequency Control, U.S.
Army Electronics Command, Fort Monmouth, New Jersey, 272 (1963).

H.F, Tiersten, "Analysis of Intermodulation in Thickness-Shear and
Trapped Energy Resonators," J, Acoust. Soc. Am., 57, 667 (1975).

P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I
(McGraw-Hill, New York, 1953), cChap.6.

Ref.7, p.786.




TABLE I

Mode Calculated Measured
NMP Frequency kHz Frequency kHz
100 2508, 2 2505,5
102 2684.0 2683.4
120 2728.6 2727.7
122 2891.0 2843,2
300 7325,.8 7325,8
302 7510.9 7514,1
320 7520.0 7520.1
322 7700.5 7693.4
500 12152.6 12154.1
502 12339.6 12343.0
520 12366.3 12367.7
522 12550.1 12532.0

TABLE II

Mode Calculated Measured

NMP C.fF c. £F

1 1
100 14,24 13.21 £ .05
102 5.81 6.25 £ .24
120 4,64 2,16 £ ,03
300 0,50 0.52 = ,03




TABLE IIIX
Mode Calculated Measured®
NMP Frequency kHz Frequency kHz
100 1097.47 1094, 75
2 1248,.72 1245,93
0 1285.69 1263.23
12 2 1416.99 -
0 3103.25 3103.54
2 3270.74 3278.93
0 3278,.82 3285.67
2 3437.77 3430, 30
(o] 5123, 38 5120.14
2 5294, 40 5297.28
0 5318.61 5319.72
2 5483, 54 5472,17
7.0 0 7127,01 7129,09
2 7299,73 7292.75
0 7318,23 7320.40
2 7486, 54 7486.37

Mode identification is conjectural,

Laboratories,

Measured data
courtesy of T.R. Meeker and A,A, Comparini of Bell
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FIGURE CAPTIONS

Plano-convex Resonator
Electroded Flat Plate

Geometry for Spherically Contoured Surface of Resonator
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